Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607253

RESUMEN

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Asunto(s)
Oxidación-Reducción , Transaldolasa , Espectroscopía de Absorción de Rayos X , Cisteína/química , Cisteína/metabolismo , Lisina/química , Lisina/metabolismo , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/química , Procesamiento Proteico-Postraduccional , Soluciones , Azufre/química , Azufre/metabolismo , Transaldolasa/metabolismo , Transaldolasa/química
2.
Inorg Chem ; 63(16): 7386-7400, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587408

RESUMEN

The molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [FeII(H2B(pz)2)2phen]0. Light-induced excited spin-state trapping (LIESST) at liquid He temperatures is exploited to characterize magnetic and spectroscopic properties of the photoinduced HS state using SQUID magnetometry and magnetic circular dichroism spectroscopy. In parallel, Fe 2p3d RIXS spectroscopy is employed to examine the ΔS = 0, 1 excited LF states. These experimental studies are combined with state-of-the-art CASSCF/NEVPT2 and CASCI/NEVPT2 calculations characterizing the ground and LF excited states. Analysis of the acquired LF information further supports the notion that the spin-crossover of [FeII(H2B(pz)2)2phen]0 is asymmetric, evidenced by a decrease in eπ in the LS state. The results demonstrate the power of cross-correlating spectroscopic techniques with high and low LF information content to make accurate excited-state assignments, as well as the current capabilities of ab initio theory in interpreting these electronic properties.

3.
JACS Au ; 4(3): 1166-1183, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38559722

RESUMEN

Cobalt complexes with multiproton- and multielectron-responsive ligands are of interest for challenging catalytic transformations. The chemical and redox noninnocence of pentane-2,4-dione bis(S-methylisothiosemicarbazone) (PBIT) in a series of cobalt complexes has been studied by a range of methods, including spectroscopy [UV-vis, NMR, electron paramagnetic resonance (EPR), X-ray absorption spectroscopy (XAS)], cyclic voltammetry, X-ray diffraction, and density functional theory (DFT) calculations. Two complexes [CoIII(H2LSMe)I]I and [CoIII(LSMe)I2] were found to act as precatalysts in a Wacker-type oxidation of olefins using phenylsilane, the role of which was elucidated through isotopic labeling. Insights into the mechanism of the catalytic transformation as well as the substrate scope of this selective reaction are described, and the essential role of phenylsilane and the noninnocence of PBIT are disclosed. Among the several relevant species characterized was an unprecedented Co(III) complex with a dianionic diradical PBIT ligand ([CoIII(LSMe••)I]).

4.
J Synchrotron Radiat ; 31(Pt 3): 622-634, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662410

RESUMEN

A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kß lines) and Zr to Ag (Lα, Lß), as well as light elements including P, S, Cl, K and Ca (Kα, Kß). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30-80) provides a high photon flux (1014 photons s-1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000-40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.

5.
Dalton Trans ; 53(18): 7828-7838, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38624161

RESUMEN

This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kß valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.

6.
Angew Chem Int Ed Engl ; 63(14): e202317038, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372407

RESUMEN

Ammonia synthesis holds significant importance for both agricultural fertilizer production and emerging green energy applications. Here, we present a comprehensive characterization of a catalyst for mechanochemical ammonia synthesis, based on Cs-promoted Fe. The study sheds light on the catalyst's dynamic evolution under reaction conditions and the origin of deactivation. Initially, elemental Cs converts to CsH, followed by partial CsOH formation due to trace oxygen impurities on the surface of the Fe metal and the equipment. Concurrently, the mechanical milling process comminutes Fe, exposing fresh metallic Fe surfaces. This comminution correlates with an induction period observed during ammonia formation. Critical to the study, degradation of active Cs promoter species (CsH and CsNH2) into inactive CsOH emerged as the primary deactivation mechanism. By increasing the Cs content from 2.2 mol % to 4.2 mol %, we achieved stable, continuous ammonia synthesis for nearly 90 hours, showcasing one of the longest-running mechanocatalytic gas phase reactions. Studies of the temperature dependence of the reaction revealed negligible bulk temperature influence in the range of -10 °C to 100 °C, highlighting the dominance of mechanical action over bulk thermal effects. This study offers insights into the complex interplay between mechanical processing, reactive species, and deactivation mechanisms in mechanocatalytic ammonia synthesis.

7.
J Am Chem Soc ; 146(8): 5045-5050, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358932

RESUMEN

Nitrogenases, the enzymes that convert N2 to NH3, also catalyze the reductive coupling of CO to yield hydrocarbons. CO-coordinated species of nitrogenase clusters have been isolated and used to infer mechanistic information. However, synthetic FeS clusters displaying CO ligands remain rare, which limits benchmarking. Starting from a synthetic cluster that models a cubane portion of the FeMo cofactor (FeMoco), including a bridging carbyne ligand, we report a heterometallic tungsten-iron-sulfur cluster with a single terminal CO coordination in two oxidation states with a high level of CO activation (νCO = 1851 and 1751 cm-1). The local Fe coordination environment (2S, 1C, 1CO) is identical to that in the protein making this system a suitable benchmark. Computational studies find an unusual intermediate spin electronic configuration at the Fe sites promoted by the presence the carbyne ligand. This electronic feature is partly responsible for the high degree of CO activation in the reduced cluster.

8.
J Am Chem Soc ; 146(6): 4013-4025, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38308743

RESUMEN

Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.

9.
Chemistry ; 30(25): e202304228, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415315

RESUMEN

Colloidal and supported manganese nanoparticles were synthesized following an organometallic approach and applied in the catalytic transfer hydrogenation (CTH) of aldehydes and ketones. Reaction parameters for the preparation of colloidal nanoparticles (NPs) were optimized to yield small (2-2.5 nm) and well-dispersed NPs. Manganese NPs were further immobilized on an imidazolium-based supported ionic phase (SILP) and characterized to evaluate NP size, metal loading, and oxidation states. Oxidation of the Mn NPs by the support was observed resulting in an average formal oxidation state of +2.5. The MnOx@SILP material showed promising performance in the CTH of aldehydes and ketones using 2-propanol as a hydrogen donor, outperforming previously reported Mn NPs-based CTH catalysts in terms of metal loading-normalized turnover numbers. Interestingly, MnOx@SILP were found to lose activity upon air exposure, which correlates with an additional increase in the average oxidation state of Mn as revealed by X-ray absorption spectroscopic studies.

10.
Nat Chem ; 16(4): 514-520, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38291260

RESUMEN

Complexes of iron in high oxidation states are captivating research subjects due to their pivotal role as active intermediates in numerous catalytic processes. Structural and spectroscopic studies of well-defined model complexes often provide evidence of these intermediates. In addition to the fundamental molecular and electronic structure insights gained by these complexes, their reactivity also affects our understanding of catalytic reaction mechanisms for small molecule and bond-activation chemistry. Here, we report the synthesis, structural and spectroscopic characterization of a stable, octahedral Fe(VI) nitrido complex and an authenticated, unique Fe(VII) species, prepared by one-electron oxidation. The super-oxidized Fe(VII) nitride rearranges to an Fe(V) imide through an intramolecular amination mechanism and ligand exchange, which is characterized spectroscopically and computationally. This enables combined reactivity and stability studies on a single molecular system of a rare high-valent complex redox pair. Quantum chemical calculations complement the spectroscopic parameters and provide evidence for a diamagnetic (S = 0) d 2 Fe(VI) and a genuine S = 1/2, d 1 Fe(VII) configuration of these super-oxidized nitrido complexes.

11.
Nat Commun ; 15(1): 871, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286982

RESUMEN

Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be overcome by combining iron with cobalt resulting in a Fe-Co bimetallic catalyst. Theoretical calculations confirm a lower metal-nitrogen binding energy for the bimetallic catalyst resulting in higher activity. Operando spectroscopy reveals that the role of cobalt in the bimetallic catalyst is to suppress the bulk-nitridation of iron and to stabilize this active state. Such catalysts are obtained from Mg(Fe,Co)2O4 spinel pre-catalysts with variable Fe:Co ratios by facile co-precipitation, calcination and reduction. The resulting Fe-Co/MgO catalysts, characterized by an extraordinary high metal loading reaching 74 wt.%, combine the advantages of a ruthenium-like electronic structure with a bulk catalyst-like microstructure typical for base metal catalysts.

12.
Science ; 382(6670): 547-553, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917685

RESUMEN

In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kß x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.

13.
J Am Chem Soc ; 145(47): 25579-25594, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37970825

RESUMEN

Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.

14.
Inorg Chem ; 62(45): 18449-18464, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37902987

RESUMEN

Diketiminate-supported iron complexes are capable of cleaving the strong triple bond of N2 to give a tetra-iron complex with two nitrides (Rodriguez et al., Science, 2011, 334, 780-783). The mechanism of this reaction has been difficult to determine, but a transient green species was observed during the reaction that corresponds to a potential intermediate. Here, we describe studies aiming to identify the characteristics of this intermediate, using a range of spectroscopic techniques, including Mössbauer spectroscopy, electronic absorption spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and nuclear resonance vibrational spectroscopy (NRVS) complemented by density functional theory (DFT) calculations. We successfully elucidated the nature of the starting iron(II) species and the bis(nitride) species in THF solution, and in each case, THF breaks up the multiiron species. Various observations on the green intermediate species indicate that it has one N2 per two Fe atoms, has THF associated with it, and has NRVS features indicative of bridging N2. Computational models with a formally diiron(0)-N2 core are most consistent with the accumulated data, and on this basis, a mechanism for N2 splitting is suggested. This work shows the power of combining NRVS, Mössbauer, NMR, and vibrational spectroscopies with computations for revealing the nature of transient iron species during N2 cleavage.

15.
Adv Mater ; 35(49): e2306621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37768320

RESUMEN

Metal chloride complexes react with tris(trimethylsilyl)phosphine under mild condition to produce metal phosphide (TMP) nanoparticles (NPs), and chlorotrimethylsilane as a byproduct. The formation of Si-Cl bonds that are stronger than the starting M-Cl bonds acts as a driving force for the reaction. The potential of this strategy is illustrated through the preparation of ruthenium phosphide NPs using [RuCl2 (cymene)] and tris(trimethylsilyl)phosphine at 35 °C. Characterization with a combination of techniques including electron microscopy (EM), X-ray absorption spectroscopy (XAS), and solid-state nuclear magnetic resonance (NMR) spectroscopy, evidences the formation of small (diameter of 1.3 nm) and amorphous NPs with an overall Ru50 P50 composition. Interestingly, these NPs can be easily immobilized on functional support materials, which is of great interest for potential applications in catalysis and electrocatalysis. Mo50 P50 and Co50 P50 NPs can also be synthesized following the same strategy. This approach is simple and versatile and paves the way toward the preparation of a wide range of transition metal phosphide nanoparticles under mild reaction conditions.

16.
Nat Struct Mol Biol ; 30(11): 1686-1694, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37710014

RESUMEN

In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na+-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na+-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na+-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na+ from a binding site localized in subunit NqrB.


Asunto(s)
Vibrio cholerae , Humanos , Vibrio cholerae/metabolismo , NAD/metabolismo , Oxidación-Reducción , Transporte de Electrón , Sodio/metabolismo , Proteínas Bacterianas/química
17.
Angew Chem Int Ed Engl ; 62(48): e202311427, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37677109

RESUMEN

Ruthenium nanoparticles (NPs) immobilized on an amine-functionalized polymer-grafted silica support act as adaptive catalysts for the hydrogenation of bicyclic heteroaromatics. Whereas full hydrogenation of benzofuran and quinoline derivatives is achieved under pure H2 , introducing CO2 into the H2 gas phase leads to an effective shutdown of the arene hydrogenation while preserving the activity for the hydrogenation of the heteroaromatic part. The selectivity switch originates from the generation of ammonium formate species on the surface of the materials by catalytic hydrogenation of CO2 . The CO2 hydrogenation is fully reversible, resulting in a robust and rapid switch between the two states of the catalyst adapting its performance in response to the feed gas composition. A variety of benzofuran and quinoline derivatives were hydrogenated to fully or partially saturated products in high selectivity and yields simply by altering the composition of the feed gas from H2 to H2 /CO2 . The adaptive catalytic system thus provides controlled access to valuable products using a single catalyst rather than two specific and distinct catalysts with static reactivity.

18.
J Am Chem Soc ; 145(38): 20739-20744, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703184

RESUMEN

Carbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula C6N9H2Fe0.4Li1.2Cl, abbreviated PTI/FeCl2) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl2/KCl flux, followed by anaerobic rinsing with methanol. X-ray diffraction, X-ray absorption and Mössbauer spectroscopies, and SQUID magnetometry indicate that there are tetrahedral high-spin iron(II) sites throughout the material, all having the same geometry. The material is active for electrocatalytic nitrate reduction to ammonia, with a production rate of ca. 0.1 mmol cm-2 h-1 and Faradaic efficiency of ca. 80% at -0.80 V vs RHE.

19.
J Am Chem Soc ; 145(33): 18477-18486, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37565682

RESUMEN

The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique µ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(µ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(µ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(µ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(µ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central µ4-S in the fully reduced 0-hole state.

20.
ChemSusChem ; 16(21): e202300719, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548998

RESUMEN

Nanosecond time-resolved X-ray (tr-XAS) and optical transient absorption spectroscopy (OTA) are applied to study 3 multimolecular photocatalytic systems with [Ru(bpy)3 ]2+ photoabsorber, ascorbic acid electron donor and Co catalysts with methylene (1), hydroxomethylene (2) and methyl (3) amine substituents in pure water. OTA and tr-XAS of 1 and 2 show that the favored catalytic pathway involves reductive quenching of the excited photosensitizer and electron transfer to the catalyst to form a CoII square pyramidal intermediate with a bonded aqua molecule followed by a CoI square planar derivative that decays within ≈8 µs. By contrast, a CoI square pyramidal intermediate with a longer decay lifetime of ≈35 µs is formed from an analogous CoII geometry for 3 in H2 O. These results highlight the protonation of CoI to form the elusive hydride species to be the rate limiting step and show that the catalytic rate can be enhanced through hydrogen containing pendant amines that act as H-H bond formation proton relays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...